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E-mail: mario.bruschi@roma1.infn.it, francesco.calogero@roma1.infn.it and
droghei@fis.uniroma3.it

Received 18 April 2007
Published 24 July 2007
Online at stacks.iop.org/JPhysA/40/9793

Abstract
It is well known that the eigenvalues of tridiagonal matrices can be identified
with the zeros of polynomials satisfying three-term recursion relations and
being therefore members of an orthogonal set. A class of such polynomials is
identified some of which feature zeros given by simple formulae involving
integer numbers. In the process certain neat formulae are also obtained,
which perhaps deserve to be included in standard compilations, since they
involve classical polynomials such as the Jacobi polynomials and other ‘named’
polynomials.

PACS numbers: 02.10.Yn, 02.30.Ik, 02.30.Gp

1. Introduction

Recently certain Diophantine conjectures have been proffered [1, 2] and proven [3] (see also
[4]). This entailed the identification of certain classes of orthogonal polynomials p(ν)

n (x), of
degree n in the variable x and depending (also polynomially) on a parameter ν, which feature
zeros given by simple formulae involving integers when the parameter ν takes appropriate
integer values. In the present paper we report additional findings of this kind, involving known
classes of orthogonal polynomials as well as new ones and including (and extending) certain
of the results reported recently by Askey [5] and Holtz [6] in connection with a remarkable
Diophantine finding presented over a century and a half ago by Sylvester [7]. Our results
consist in the identification of classes, defined by three-term recursion relations (see (1)), of
orthogonal polynomials some of which—of arbitrary degree n—feature zeros given by neat
formulae involving integers, or equivalently in the identification of ‘remarkable’ tridiagonal
matrices—of arbitrary order n, see (3)—whose eigenvalues are likewise given by neat formulae
involving integers. Another finding—which is instrumental to get our Diophantine results,
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but seems of interest in its own right (indeed, might possibly be deemed the most interesting
finding of this paper)—identifies classes of orthogonal polynomials, defined by three-term
recursion relations and depending on a parameter ν (see (1)), which moreover also satisfy
a second recursion involving that parameter (see (6)) and possibly as well some remarkable
factorization properties. These findings are presented in section 2 and proven in section 4,
while several examples are exhibited in section 3. Some remarks about continuations of these
investigations are outlined in section 5. Certain developments whose detailed report in the
body of the paper might disrupt the flow of the presentation are confined to four appendices,
the last of which reviews tersely the original approach that led us to our findings, by applying
it to two new cases and reporting the corresponding results (including the exhibition of some
Diophantine formulae).

2. Main results

In this section 2 we present our main results.
Let the class of monic polynomials p(ν)

n (x), of degree n in the variable x and depending
on the parameter ν, be defined by the three-term recursion relation

p
(ν)
n+1(x) = (

x + a(ν)
n

)
p(ν)

n (x) + b(ν)
n p

(ν)
n−1(x) (1a)

with the ‘initial’ assignment

p
(ν)
−1(x) = 0, p

(ν)
0 (x) = 1, (1b)

clearly entailing

p
(ν)
1 (x) = x + a

(ν)
0 , p

(ν)
2 (x) = (

x + a
(ν)
1

)(
x + a

(ν)
0

)
+ b

(ν)
1 (1c)

and so on.

Notation. Hereafter the index n is a nonnegative integer (but some of the formulae written
below might make little sense for n = 0, requiring a—generally quite obvious—special
interpretation), and a(ν)

n , b(ν)
n are functions of this index n and of the parameter ν. These

functions are hereafter assumed to be independent of the variable x; although a linear
dependence of a(ν)

n on x and a quadratic dependence of b(ν)
n on x would not spoil the polynomial

character (of degree n) of p(ν)
n (x). They might also depend on other parameters besides ν (see

below); but ν plays a special role, because in the following we shall mainly focus on special
values of this parameter (generally simply related to the index n).

Remark 2.1. The polynomials p(ν)
n (x) are generally orthogonal (‘Favard theorem’ [8, 10])

but this feature plays no role in the following.

Remark 2.2. The (monic, orthogonal) polynomials p(ν)
n (x) defined by the three-term recursion

relation (1) are related to tridiagonal matrices via the well-known formula

p(ν)
n (x) = det[x − M(ν)] (2)

with the tridiagonal n × n matrix M(ν) defined componentwise as follows:

M
(ν)
m,m+1 = b(ν)

m

c
(ν)
m

, m = 1, . . . , n − 1, (3a)

M(ν)
m,m = −a

(ν)
m−1, m = 1, . . . , n, (3b)

M
(ν)
m,m−1 = −c

(ν)
m−1, m = 2, . . . , n (3c)
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with all other elements vanishing. Here the n − 1 quantities c(ν)
m ,m = 1, . . . , n − 1 are

arbitrary (of course nonvanishing, c(ν)
m �= 0, see (3a)). These formulae entail that the n zeros

of the polynomial p(ν)
n (x) defined by the three-term recursion relation (1) coincide with the n

eigenvalues of the tridiagonal n × n matrix M(ν), see (3).

Hence the Diophantine findings reported below, identifying polynomials belonging to
orthogonal families that feature zeros given by neat formulae involving integers, might as
well be reformulated as identifying tridiagonal matrices that are remarkable inasmuch as they
feature eigenvalues given by neat formulae involving integers.

2.1. Second recursion relation

We now report a result concerning the (monic, orthogonal) polynomials p(ν)
n (x) defined by

the three-term recursion relations (1). This finding is instrumental to obtain the Diophantine
results detailed in the following, but—as already mentioned above—it seems of interest in
itself.

Proposition 2.3. Assume that the quantities A(ν)
n and α(ν) satisfy the nonlinear recursion

relation[
A

(ν)
n−1 − A

(ν−1)
n−1

][
A(ν)

n − A
(ν−1)
n−1 + α(ν)

]
= [

A
(ν−1)
n−1 − A

(ν−2)
n−1

][
A

(ν−1)
n−1 − A

(ν−2)
n−2 + α(ν−1)

]
(4a)

with the boundary condition

A
(ν)
0 = A (4b)

where A is an arbitrary constant (independent of ν), and that the coefficients a(ν)
n and b(ν)

n are
defined in terms of these quantities by the following formulae:

a(ν)
n = A

(ν)
n+1 − A(ν)

n , (5a)

b(ν)
n = [

A(ν)
n − A(ν−1)

n

][
A(ν)

n − A
(ν−1)
n−1 + α(ν)

]
. (5b)

Then the polynomials p(ν)
n (x) identified by the recursion relation (1) satisfy the following

additional recursion relation (involving a shift both in the order n of the polynomials and in
the parameter ν):

p(ν)
n (x) = p(ν−1)

n (x) + g(ν)
n p

(ν−1)
n−1 (x) (6)

with

g(ν)
n = A(ν)

n − A(ν−1)
n . (7)

A more general version of this proposition 2.3 can be formulated, but since we did not
(yet) find any interesting application of it we relegate it to appendix A.

It is unlikely that it will be possible to find the general solution of the nonlinear relations
(4a) with (or possibly without) (4b). But nontrivial classes of quantities A(ν)

n and α(ν) satisfying
the nonlinear relations (4) are provided in section 3—as well as the corresponding coefficients
a(ν)

n and b(ν)
n (see (5)) and g(ν)

n (see (7)) defining, via the recursion relations (1), families of
(monic, orthogonal) polynomials p(ν)

n (x) satisfying—as entailed by this proposition 2.3—also
the second class of recursion relations (6).

Moreover, in appendix B we report several relations implied, by the nonlinear equations
(4), for the coefficients a(ν)

n , b(ν)
n and g(ν)

n , including some formulae used in section 4 to prove
this proposition 2.3 as well as propositions 2.4 and 2.8 presented below.
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2.2. Factorization

Proposition 2.4. If the (monic, orthogonal) polynomials p(ν)
n (x) are defined by the recursion

relation (1) and the coefficients b(ν)
n satisfy the relation

b(n)
n = 0, (8)

entailing that, for ν = n, the recursion relation (1a) reads

p
(n)
n+1(x) = (

x + a(n)
n

)
p(n)

n (x), (9)

then there holds the factorization

p(m)
n (x) = p̃

(−m)
n−m (x)p(m)

m (x), m = 0, 1, . . . , n (10)

with the ‘complementary’ polynomials p̃(−m)
n (x) (of course of degree n) defined by the following

three-term recursion relation analogous (but not identical) to (1):

p̃
(−m)
n+1 (x) = (

x + a(m)
n+m

)
p̃(−m)

n (x) + b(m)
n+mp̃

(−m)
n−1 (x), (11a)

p̃
(−m)
−1 (x) = 0, p̃

(−m)
0 (x) = 1, (11b)

entailing

p̃
(−m)
1 (x) = x + a(m)

m , (11c)

p̃
(−m)
2 (x) = (

x + a
(m)
m+1

)(
x + a(m)

m

)
+ b

(m)
m+1

= (
x − x(+)

m

)(
x − x(−)

m

)
(11d)

with

x(±)
m = 1

2

{−a(m)
m − a

(m)
m+1 ± [(

a(m)
m − a

(m)
m+1

)2 − 4b
(m)
m+1

]1/2}
(11e)

and so on.

The following two results are immediate consequences of proposition 2.4.

Corollary 2.5. If (8) holds—entailing (9) and (10) with (11)—the polynomial p(n−1)
n (x) has

the zero −a
(n−1)
n−1 ,

p(n−1)
n

( − a
(n−1)
n−1

) = 0, (12a)

and the polynomial p(n−2)
n (x) has the two zeros x

(±)
n−2, see (11e),

p(n−2)
n

(
x

(±)
n−2

) = 0. (12b)

The first of these results is a trivial consequence of (9); the second is evident from (10) and
(11). Note moreover that from the factorization formula (10) one can likewise find explicitly
three zeros of p(n−3)

n (x) and four zeros of p(n−4)
n (x), by evaluating from (11) p̃

(−m)
3 (x) and

p̃
(−m)
4 (x) and by taking advantage of the explicit solvability of algebraic equations of degree

3 and 4.

Corollary 2.6. If (8) holds—entailing (9) and (10) with (11)—and moreover the quantities
a(m)

n and b(m)
n satisfy the symmetry properties

a
(−m)
n−m = a(m)

n , b
(−m)
n−m = b(m)

n (13)

then

p̃(m)
n (x) = p(m)

n (x) (14)
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entailing that factorization (10) takes the neat form

p(m)
n (x) = p

(−m)
n−m (x)p(m)

m (x), m = 0, 1, . . . , n. (15)

Note that these results about factorization only hold for polynomials p(ν)
n (x) with the

parameter ν taking integer values.
The following remark is relevant when both propositions 2.3 and 2.4 hold.

Remark 2.7. As implied by (5b), condition (8) can be enforced via the assignment

α(ν) = A
(ν−1)
ν−1 − A(ν)

ν (16)

entailing that the nonlinear recursion relation (5a) reads[
A

(ν)
n−1 − A

(ν−1)
n−1

][
A(ν)

n − A
(ν−1)
n−1 + A

(ν−1)
ν−1 − A(ν)

ν

]
= [

A
(ν−1)
n−1 − A

(ν−2)
n−1

][
A

(ν−1)
n−1 − A

(ν−2)
n−2 + A

(ν−2)
ν−2 − A

(ν−1)
ν−1

]
. (17)

2.3. Diophantine findings

Proposition 2.8. If the (monic, orthogonal) polynomials p(ν)
n (x) are defined by the three-term

recursion relations (1) with coefficients a(ν)
n and b(ν)

n satisfying the requirements sufficient for
the validity of both propositions 2.3 and proposition 2.4 (namely (5) with (4) and (8) or just
with (17)), then

p(n)
n (x) =

n∏
m=1

(x − xm), (18a)

with the following (n-independent) expression of the n zeros xm:

xm = A
(m−1)
m−1 − A(m)

m (18b)

or equivalently (see (5a) and (7))

xm = −(
a

(m−1)
m−1 + g(m)

m

)
. (18c)

The following results are immediate consequences of this proposition 2.8 and of
corollary 2.5

Corollary 2.9. If proposition 2.8 holds, then also the polynomials p(n−1)
n (x) and p(n−2)

n (x) (in
addition to p(n)

n (x), see (18)) can be written explicitly as

p(n−1)
n (x) = (

x + a
(n−1)
n−1

) n−1∏
m=1

(x − xm), (19a)

p(n−2)
n (x) = [(

x + a
(n−2)
n−1

)(
x + a

(n−2)
n−2

)
+ b

(n−2)
n−1

] n−2∏
m=1

(x − xm). (19b)

The Diophantine character of these findings—as indicated in the title of this
section 2.3—emerges from the explicitly factorized expressions—generally involving
integers—of the polynomial p(n)

n (x), see (18), and of the polynomials p(n−1)
n (x) and p(n−2)

n (x),
see (19) and the examples below. Analogously explicit results can clearly be written for the
polynomials p(n−3)

n (x) and p(n−4)
n (x), see the last part of corollary 2.5.



9798 M Bruschi et al

3. Examples

In this section 3, we report some assignments of the quantities A(ν)
n a(ν)—hence correspondingly

of the coefficients a(ν)
n , b(ν)

n and g(ν)
n , see (5) and (7)—guaranteeing the validity of

proposition 2.3, and often as well of the other results reported in the preceding section 2;
and whenever appropriate we tersely discuss the corresponding polynomials, which are often
related to known (named) ones. But before delving into the exhibition of various examples,
let us report the following, rather obvious

Remark 3.1. If a set of coefficients a(ν)
n , b(ν)

n and g(ν)
n satisfies the requirements sufficient to

guarantee the validity of the results reported in section 2, the following extension of it,

ǎ(ν)
n = γ a(ν)

n + α, b̌(ν)
n = γ 2b(ν)

n , ǧ(ν)
n = γg(ν)

n , (20a)

with α and γ two arbitrary parameters, also satisfies the same conditions; this extension being
clearly related to the following transformation of the corresponding polynomials:

p̌(ν)
n (x) = γ np(ν)

n

(
x + α

γ

)
. (20b)

Note that the polynomials p̌(ν)
n (x) are as well monic.

In the examples presented below, we generally refrain from reducing the number of free
parameters by exploiting systematically this remark 3.1, since this might obfuscate rather
than highlight the transparency of our findings. The diligent reader is welcome to verify the
consistency of all the findings reported below with the validity of this remark 3.1.

3.1. Polynomial solution of (4)

The following assignment satisfies the nonlinear conditions (4):

A(ν)
n = k0 + k1n + k2n

2 + k3n
3 +

(
k4n − 3

2k3n
2
)
ν (21a)

with

α(ν) = −k1 + k2 + 1
2k3 + k4 + k5 − (

2k2 + 3
2k3 + 2k4

)
ν + 3

2k3ν
2, (21b)

A = k0. (21c)

Here the five parameters kj are arbitrary.
The corresponding expressions of the coefficients a(ν)

n , b(ν)
n and g(ν)

n read

a(ν)
n = k1 + k2 + k3 + (− 3

2k3 + k4)ν + [2k2 + 3k3(1 − ν)]n + 3k3n
2, (21d)

b(ν)
n = − 1

4n(3k3n − 2k4)[2k5 + 2(2k2 + k4)(n − ν) + 3k3(n − ν)2], (21e)

g(ν)
n = − 1

2n(3k3n − 2k4). (21f )

Hereafter we identify our polynomials p(ν)
n (x) belonging to this class—hence satisfying

proposition 2.3—as p(ν)
n (x; k1, k2, k3, k4, k5).

Remark 3.2. It is plain (see (21e) and (8)) that the subclass p(ν)
n (x; k1, k2, k3, k4, 0) of these

polynomials also satisfies propositions 2.4 and 2.8, entailing the factorization

p(n)
n (x; k1, k2, k3, k4, 0) =

n∏
m=1

(x − xm) (22a)
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with

xm = α(m) = −k1 + k2 + 1
2k3 + k4 − (

2k2 + 3
2k3 + 2k4

)
m + 3

2k3m
2, (22b)

as well as

p(n−1)
n (x; k1, k2, k3, k4, 0) = (x − x̂n)

n−1∏
m=1

(x − xm) (23a)

with

x̂n = −k1 + k2 + 1
2k3 + k4 − (

2k2 + 3
2k3 + k4

)
n, (23b)

and

p(n−2)
n (x; k1, k2, k3, k4, 0) = (

x − x̂(+)
n

)
(x − x̂(−)

n )

n−2∏
m=1

(x − xm) (24a)

with

x̂(±)
n = −k1 + 2(k2 + k3 + k4) − (2k2 + 3k3 + k4)n ± 1

2

√
zn) (25)

where

zn = (2k2 + 3k3 + 2k4)
2 − 2(3k3 + 2k4)(2k2 + 3k3 + k4)n + 6k3(2k2 + 3k3 + k4)n

2. (26)

Obviously there are many special cases in which zn becomes a perfect square, for instance

k3 = 0, k4 = −2k2, zn = (2k2)
2 (27a)

yielding

x̂(+)
n = −k1 − k2, x̂(−)

n = −k1 − 3k2; (27b)

k2 = 0, k4 = − 3
2k3, zn = (3k3n)2 (28a)

yielding

x̂(+)
n = −k1 − k3, x̂(−)

n = −k1 − k3 − 3k3n; (28b)

k2 = − 1
2k, k3 = 1

3 , k4 = − 1
2 + k, zn = (n − k)2 (29a)

yielding

x̂(+)
n = −k1 − 1

3
+

1

2
k, x̂(−)

n = −k1 − 1

3
+

3

2
k − n; (29b)

k2 = k(2k − 3)

2(2k − 1)
, k3 = 1

3(2k − 1)
, k4 = 1

2
, zn = (n − k)2 (30a)

yielding

x̂(±)
n = −k1 +

(2 ± 1)

2
k − 1

3(2k − 1)
+

(
1 ± 1

2
− k

)
n. (30b)

There moreover holds factorization (10) and, for the subclass of polynomials
p(ν)

n (x; k1, k2, k3,−k2, 0), factorization (15),

p(m)
n (x; k1, k2, k3,−k2, 0) = p

(−m)
n−m (x; k1, k2, k3,−k2, 0)p(m)

m (x; k1, k2, k3,−k2, 0),
(31)

m = 0, 1, . . . , n.

In the following subsections we report a few specific examples involving ‘named’
polynomials; examples involving other named polynomials are in hand but they are not
presented here to avoid overburdening this paper. For an additional example, including the
exhibition of Diophantine matrices, see appendix D.
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3.1.1. Laguerre polynomials. The ‘normalized Laguerre polynomials’ £(α)
n (x), related to the

usual generalized Laguerre polynomials L(α)
n (x) by the formula

L(α)
n (x) = (−1)n

n!
£(α)

n (x), (32)

are the following special case of the polynomials p(ν)
n (x; k1, k2, k3, k4, k5),

£(α)
n (x) = p(−α)

n (x; 0,−1, 0, 1, 0) (33)

as seen by comparing the recursion relation (1.11.4) of http://aw.twi.tudelft.nl/∼koekoek/
askey/ch1/par11/par11.html [9] with our recursion relation (1) with (21d) and (21e). Note
that it was actually unnecessary to set k5 = 0 on the right-hand side of this formula, (33),
since—as can be easily seen—any value of k5 yields in this case the same outcome; by setting
k5 = 0 we made it evident that these polynomials satisfy not only proposition 2.3, but also
propositions 2.4 and 2.8. Hence the normalized Laguerre polynomials £(α)

n (x) satisfy the
second recursion relation (see (7))

£(α)
n (x) = £(α+1)

n (x) + n£(α+1)
n−1 , (34a)

and correspondingly the generalized Laguerre polynomials L(α)
n (x) satisfy the (well-known)

second recursion relation

L(α)
n (x) = L(α+1)

n (x) − L
(α+1)
n−1 . (34b)

Likewise the normalized Laguerre polynomials satisfy the factorization

£(−m)
n (x) = £(m)

n−m(x)£(−m)
m (x)

= xm£(m)
n−m(x), m = 0, 1, . . . , n (35a)

entailing for the generalized Laguerre polynomials the formula

L(−m)
n (x) = m!(n − m)!

n!
xmL

(m)
n−m(x), m = 0, 1, . . . , n. (35b)

And the previous findings entail that the generalized Laguerre polynomials L(−m)
n (x) satisfy

the following properties (displaying the Diophantine character of their zeros):

L(−n)
n (x) = (−1)n

n!
xn, (36a)

L(−n+1))
n (x) = (−1)n

n!
xn−1(x − n), (36b)

L(−n+2))
n (x) = (−1)n

n!
(x − n − √

n)(x − n +
√

n)xn−2, (36c)

implying, for instance, the additional Diophantine finding

L
(−n2+2))

n2 (x) = (−1)n
2

n2!
[x − n(n + 1)][x − n(n − 1)]xn2−2. (36d)

Some (but not all) of these formulae are reported in the standard compilations [9–12].

3.1.2. Meixner polynomials. The ‘normalized Meixner polynomials’ M̃n(x;β, c), related to
the usual Meixner polynomials M(α)

n (x;β, c) by the formula

Mn(x;β, c) = 1

(β)n

(
c − 1

c

)n

M̃n(x;β, c), (37)

http://aw.twi.tudelft.nl/$sim $koekoek/askey/ch1/par11/par11.html
http://aw.twi.tudelft.nl/$sim $koekoek/askey/ch1/par11/par11.html
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are the following special case of the polynomials p(ν)
n (x; k1, k2, k3, k4, k5),

M̃n(x;β, c) = p(−β)
n

(
x;−1

2

c + 1

c − 1
,

1

2

c + 1

c − 1
, 0,− c

c − 1
,− 1

c − 1

)
, (38)

as seen by comparing the recursion relation (1.9.4) of http://aw.twi.tudelft.nl/∼koekoek/
askey/ch1/par9/par9.html [9] with our recursion relation (1) (with (21d) and (21e)). Note
that in this case the condition k5 = 0 cannot be enforced (except for c = ∞), so these
polynomials satisfy proposition 2.3 but not propositions 2.4 and 2.8. Hence the normalized
Meixner polynomials M̃n(x;β, c) satisfy the second recursion relation (see (7))

M̃n(x;β, c) = M̃n(x;β + 1, c) − c

c − 1
nM̃n−1(x;β + 1, c), (39a)

and correspondingly the usual Meixner polynomials Mn(x;β, c) satisfy the second recursion
relation

βMn(x;β, c) = (β + n)Mn(x;β + 1, c) − n(β + n)Mn−1(x;β + 1, c), (39b)

which is not reported in the standard compilations [9–12].

3.1.3. Continuous Dual Hahn (CDH) polynomials. The ‘normalized CDH polynomials’
S̃n(x;α, β, γ ), related to the usual CDH polynomials Sn(x;α, β, γ ) by the formula

Sn(x;α, β, γ ) = (−1)nS̃n(x;α, β, γ ), (40)

are the following special case of the polynomials p(ν)
n (x; k1, k2, k3, k4, k5),

S̃n(x;α, β, γ ) = p(−α)
n

(
x;β + γ − βγ − 5

6 ,−β − γ + 3
2 ,− 2

3 , β + γ − 1, β + γ − 1 − βγ
)

(41)

as seen by comparing the recursion relation (1.3.5) of http://aw.twi.tudelft.nl/∼koekoek/askey/
ch1/par3/par3.html [9] with our recursion relation (1) (with (21d) and (21e)); note that, since
these polynomials are completely symmetrical under the exchange of their three parameters
α, β, γ, two other identifications could of course have been made. Hence the CDH polynomials
Sn(x;α, β, γ ) satisfy the second recursion relation (see (7))

Sn(x;α, β, γ ) = Sn(x;α + 1, β, γ ) − n(n + β + γ − 1)Sn−1(x;α + 1, β, γ ), (42)

which is not reported in the standard compilations [9–12]. It is moreover clear that for the
following subclass of these polynomials:

Sn(x;α, β, 1) = (−1)np(α)
n

(
x; 1

6 , 1
2 − β,− 2

3 , β, 0
)

(43)

there holds factorization (10) (although not factorization (15)); hence the following explicit
expressions:

Sn(x;−n, β, 1) = (−1)n
n∏

m=1

(x + m2), (44)

Sn(x;−n + 1, β, 1) = (−1)n(x − βn)

n−1∏
m=1

(x + m2), (45)

Sn(x;−n + 2, β, 1) = (−1)n[x2 + (−2n + 1 − 2βn)x + β(β + 1)n(n − 1)]
n−2∏
m=1

(x + m2),

(46)

http://aw.twi.tudelft.nl/$sim $koekoek/askey/ch1/par9/par9.html
http://aw.twi.tudelft.nl/$sim $koekoek/askey/ch1/par9/par9.html
http://aw.twi.tudelft.nl/$sim $koekoek/askey/ch1/par3/par3.html
http://aw.twi.tudelft.nl/$sim $koekoek/askey/ch1/par3/par3.html


9802 M Bruschi et al

entailing

Sn(x;−n + 2,−1, 1) = (−1)nx(x + 1)

n−2∏
m=1

(x + m2), (47a)

Sn(x;−n + 2, 0, 1) = (−1)nx(x + 1 − 2n)

n−2∏
m=1

(x + m2), (47b)

Sn

(
x;−n + 2,

1

2
(1 ±

√
5), 1

)
= (−1)n(x + 1 − n)[x − (2 ±

√
5)n]

n−2∏
m=1

(x + m2), (47c)

whose Diophantine character (in terms of the zeros of these polynomials) is plain. These
formulae are not reported in the standard compilations [9–12].

3.1.4. Askey’s B polynomials. Let us introduce the following modified version of the
polynomials Bn(x; a, µ) introduced by Askey [5], via the position

B̂n(x; a, µ) = Bn(x + aµ; a, µ). (48)

The motivation for modifying in this manner Askey’s B-polynomials will be clear below. Let
us moreover emphasize that we allow the parameter µ to be an arbitrary number (while it was
restricted to be an integer in [5]).

It is easily seen that these polynomials B̂n(x; a, µ, β) are a subclass of our polynomials
p(ν)

n (x; k1, k2, k3, k4, k5):

B̂n(x; a, µ) = p(µ+1+k)
n

[
x;−a(1 + k) + 1

2 ,− 1
2 , 0, a, k(a − 1)

]
. (49a)

It is moreover plain that the parameter k appearing on the right-hand side of this formula plays
no role, hence hereafter we set it to zero:

B̂n(x; a, µ) = p(µ+1)
n

(
x;−a + 1

2 ,− 1
2 , 0, a, 0

)
. (49b)

It is thereby clear that these polynomials satisfy condition (8) hence satisfy proposition 2.4
(see remark 3.2), in addition of course to propositions 2.3 and 2.8 (while clearly factorization
(15) only holds for a = 1/2).

Hence these polynomials satisfy the second recurrence relation,

B̂n(x; a, µ) = B̂n(x; a, µ − 1) + anB̂n−1(x; a, µ − 1), (50)

and there holds for their subclass with a = 1/2 the factorization

B̂n

(
x; 1

2 ,m − 1
) = B̂n−m

(
x; 1

2 ,−m − 1
)) · B̂m

(
x; 1

2 ,m − 1
)
,

(51)
m = 1, 2, . . . , n.

Let us emphasize that, due to the definition (48), a shift in the parameter µ of the polynomials
B̂n(x; a, µ) also entails a shift in the variable x for the polynomials Bn(x; a, µ).

Moreover for these polynomials there hold the Diophantine factorizations

B̂n(x; a, n − 1) =
n∏

m=1

(x − xm), (52a)

xm = (2a − 1)(1 − m); (52b)
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B̂n(x; a, n − 2) = (x − x̂n)

n−1∏
m=1

(x − xm), (53a)

x̂n = a − (1 − a)(1 − n); (53b)

B̂n(x; a, n − 3) = (
x − x̂(+)

n

)(
x − x̂(−)

n

) n−2∏
m=1

(x − xm), (54a)

x̂(±)
n = 3

(
a − 1

2

)
+ (1 − a)n ± 1

2

√
(1 − 2a)2 + 4a(1 − a)n. (54b)

Hence, in addition to the (already known [5]) simple cases (a = 0, a = 1) when
the original three-term relation becomes a two-term relation, additional Diophantine (i.e.,
integer respectively rational) zeros occur, for instance, for n = m2, a = 1/2 entailing
x̂(±)

n = m(m ± 1)/2 respectively for n = m2, a = (4m2 − 1)/[2(2m2 − 1)] entailing
x̂(±)

n = m(5m ± 1)/[2(2m2 − 1)].

3.2. Rational solution of (4)

The following assignment satisfies the nonlinear conditions (4):

A(ν)
n = n

(
c0c1 +

(
c1 − c2 + c0c3 + 3c2

0c4
)
ν + (c2 + c3ν)n + c4(2c0 − 2ν + n)n2)

)
(c0 + 2n − ν)

(55a)

with

α(ν) = −c1 + c3 + c4(1 + 3c0) − (2c3 + 3c4(1 + 2c0))ν + 3c4ν
2, (55b)

A = 0. (55c)

Here the five parameters cj are arbitrary.
The corresponding expressions of the coefficients a(ν)

n , b(ν)
n and g(ν)

n read

a(ν)
n = a(n, ν)

(c0 + 2n − ν)(c0 + 2 + 2n − ν)
, (56a)

a(n, ν) = c0[c2 + c4 + c0(c1 + 2c4)] − (1 + c0){c2 + c4 − c0[c3 + 3c4(c0 − 1)]}ν
− [c0(c3 + 3c0c4) + c1 − c2 + c3 − 2c4]ν2 + (1 + c0)[c2 + c4(1 + 3c0)]n

+ 2[c0(c3 − 6c4) − c2 + c3 − 4c4]nν − 2(c3 − 3c4)nν2

+ 2
[
c2 + c4

(
4 + 9c0 + 3c2

0

)]
n2 + 2[c3 − 3c4(3 + 2c0)]n

2ν + 6c4n
2ν2

+ 12(1 + c0)c4n
3 − 12c4n

3ν + 6c4n
4; (56b)

b(ν)
n = n(n − ν)(c0 + n)(c0 + n − ν)b̃(n, ν)b̂(n, ν)

(c0 + 2n − ν)2(c0 + 1 + 2n − ν)(c0 − 1 + 2n − ν)
, (57a)

b̃(n, ν) = c0(c3 + 3c0c4) + 2c1 − c2 + (2c3 + 3c0c4)n − 3c4n
2, (57b)

b̂(n, ν) = c0(c3 + 3c0c4) − 2c1 + c2 + 3c4ν
2 + (2c3 + 9c0c4)(n − ν) − 6c4νn + 3c4n

2, (57c)

g(ν)
n = n(c0 + n)(c0(c3 + 3c0c4) + 2c1 − c2 + (2c3 + 3c0c4)n − 3c4n

2)

(c0 + 2n − ν)(c0 + 1 + 2n − ν)
. (58)
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Hereafter we identify our polynomials p(ν)
n (x) belonging to this class—hence satisfying

proposition 2.3—as p(ν)
n (x; c0, c1, c2, c3, c4). Of course they should not be confused with the

polynomials introduced in the preceding section 3.1.
It is plain (see (57a) and (8)) that these polynomials also satisfy propositions 2.4 and 2.8,

entailing the factorizations

p(n)
n (x; c0, c1, c2, c3, c4) =

n∏
m=1

(x − xm), (59a)

xm = α(m) = −c1 + c3 + c4(1 + 3c0) − [2c3 + 3c4(1 + 2c0)]m + 3c4m
2; (59b)

p(n−1)
n (x; c0, c1, c2, c3, c4) = (x − x̂n)

n−1∏
m=1

(x − xm), (60a)

x̂n = − (1 + c0)[c1 − c3 − c4(1 + 3c0)] + [c0(c3 + 3c4(2 + c0)) − c1 + c2 + c3 + 2c4]n

1 + c0 + n
. (60b)

Three interesting cases that deserve to be highlighted read as follows:

p(n−1)
n (x;−1, c1, c2, c3, c4) = (x − x̂n)

n−1∏
m=1

(x − xm), (61a)

x̂n = c1 − c2 + c4, (61b)

xm = −c1 + c3 − 2c4 − (2c3 − 3c4)m + 3c4m
2; (61c)

p(n−1)
n (x; 0, c2 + c3 + 2c4, c2, c3, c4) = (x − x̂n)

n−1∏
m=1

(x − xm), (62a)

x̂n = −c2 + c4

n + 1
, (62b)

xm = −(c2 + c4 + (2c3 + 3c4)m − 3c4m
2); (62c)

p(n−1)
n

(
x; 0,−1 + 3σ

2
c4,−c4 − ρ,−3

2
(1 + σ)c4, c4

)
= (x − x̂n)

n−1∏
m=1

(x − xm), (63a)

x̂n = ρ
n

n + 1
, (63b)

xm = 3c4m(m + σ). (63c)

Moreover

p(n−2)
n (x; c0, c1, c2, c3, c4) = (

x − x̂(+)
n

)(
x − x̂(−)

n

) n−2∏
m=1

(x − xm). (64)

We do not report the (rather complicated) expressions of the two zeros x̂(±)
n , except in the

following special cases:

p(n−2)
n (x;−1, c1, c2, c3, c4) = (

x − x̂(+)
n

)(
x − x̂(−)

n

) n−2∏
m=1

(x − xm), (65a)
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x̂(+)
n = −3c1 + c2 + 4c3 − 5c4 + (c1 − c2 − 2c3 + c4)n

n + 1
, (65b)

x̂(−)
n = c1 − c2 + c4, (65c)

with the zeros xm given by (61c);

p(n−2)
n (x;−2, c1, c2, c3, 0) = (

x − x̂(+)
n

)(
x − x̂(−)

n

) n−2∏
m=1

(x − xm), (66a)

x̂(±)
n = c1 − c2 ± c3, (66b)

xm = −c1 + c3 − 2c3m. (66c)

The enterprising reader will surely identify several other remarkable cases.
Moreover there holds factorization (10) and, for the subclass of polynomials with

c3 = −3c0c4 (67a)

factorization (15),

p(m)
n (x; c0, c1, c2,−3c0c4, c4)

= p
(−m)
n−m (x; c0, c1, c2,−3c0c4, c4)p

(m)
m (x; c0, c1, c2,−3c0c4, c4),

m = 0, 1, . . . , n. (67b)

3.2.1. Jacobi polynomials. The ‘normalized Jacobi polynomials’ P̃
(α,β)
n (x), related to the

usual Jacobi polynomials P
(α,β)
n (x) by the formula

P (α,β)
n (x) = (n + α + β + 1)n

2nn!
P̃ (α,β)

n (x), (68)

are the following special case of the polynomials p(ν)
n (x; c0, c1, c2, c3, c4):

P̃ (α,β)
n (x) = p(−β)

n (x;α, 1, 0, 0, 0), (69)

as seen by comparing the recursion relation (1.8.4) of http://aw.twi.tudelft.nl/∼koekoek/
askey/ch1/par8/par8.html#par1 [9] with our recursion relation (1). Here, and always in the
following, additional relations are implied by the well-known symmetry of Jacobi polynomials
under the exchange of the two parameters they feature,

P (α,β)
n (x) = P (β,α)

n (−x), P̃ (α,β)
n (x) = P̃ (β,α)

n (−x). (70)

It is evident that these polynomials (see (69)) satisfy propositions 2.3, 2.4 and 2.8. Hence
the normalized Jacobi polynomials P̃

(α,β)
n (x) satisfy the second recursion relation (see (7))

P̃ (α,β)
n (x) = P̃ (α,β+1)

n (x) +
2n(n + α)

(2n + α + β)(2n + α + β + 1)
P̃ (α,β+1)

n (x), (71a)

and correspondingly the Jacobi polynomials P
(α,β)
n (x) satisfy the (well-known) second

recursion relation

(2n + α + β + 1)P (α,β)
n (x) = (n + α + β + 1)P (α,β+1)

n (x) + (n + α)P
(α,β+1)

n−1 (x). (71b)

There holds moreover the following (well-known) Diophantine factorization formula

P̃ (α,−n)
n (x) = (x + 1)n (72)

http://aw.twi.tudelft.nl/$sim $koekoek/askey/ch1/par8/par8.html#par1
http://aw.twi.tudelft.nl/$sim $koekoek/askey/ch1/par8/par8.html#par1
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as well as (see (60b))

P̃ (α,−n+1)
n (x) =

(
x +

α + 1 − n

α + 1 + n

)
(x + 1)n−1, (73)

P̃ (α,−n+2)
n (x) = (

x − x̂(+)
n

)(
x − x̂(−)

n

)
(x + 1)n−2, (74a)

x̂(±)
n = n(n − 1) − (α + 1)(α + 2) ± 2

√
(α + 2)n(n + α + 1)

n(n + 2α + 3) + (α + 1)(α + 2)
. (74b)

In particular for α = −2

P̃ (−2,−n+2)
n (x) = (x − 1)2(x + 1)n−2 (74c)

and for α = −1

P̃ (−1,−n+2)
n (x) =

(
x − n − 3

n + 1

)
(x − 1)(x + 1)n−2. (74d)

And clearly there are additional Diophantine zeros whenever (α + 2)n(n + α + 1) is a perfect
square, for instance

P̃ (α,−n+2)
n (x) =

[
x − n − δ(2δ + 1)

n + δ

] [
x − n2 − (2δ2 + 3δ + 3)n − δ

n2 + (3δ + 1)n + δ(2δ + 1)

]
(x + 1)n−2, (74e)

α = (δ2 + 2δ − 1)n + 2δ2

n − δ2
, (74f )

P̃
(α,β)

1+2k(k−1)(x) =
(

x − 2k − 1

4k(k − 1) + 1

)2

(x + 1)−1+2k(k−1), (74g)

α = −1 + 2k(k − 1), β = −1 − 2k(k − 1), k = 2, 3, . . . . (74h)

Perhaps (some of) these formulae deserve to be included in the standard compilations.

4. Proofs

In this section, we prove the three propositions reported in the preceding section 2 (also using
some formulae of appendix B).

The proof of proposition 2.3 (i.e., of (6)) is by induction. Clearly this relation holds for
n = 1 (via (1c) and (B.1d)). Let us assume that it holds up to n, and prove that it then holds
for n + 1. Indeed using (6) on the right-hand side of the recursion relation (1a) we get

p
(ν)
n+1(x) = (

x + a(ν)
n

)[
p(ν−1)

n (x) + g(ν)
n p

(ν−1)
n−1 (x)

]
+ b(ν)

n

[
p

(ν−1)
n−1 (x) + g

(ν)
n−1p

(ν−1)
n−2 (x)

]
. (75)

We then note that the recursion relation (1a) entails the formulae

p
(ν−1)
n−1 (x) = p

(ν−1)
n+1 (x) − (

x + a(ν−1)
n

)
p(ν−1)

n (x)

b
(ν−1)
n

, (76a)

p
(ν−1)
n−2 (x) =

[
b(ν−1)

n +
(
x + a

(ν−1)
n−1

)(
x + a(ν−1)

n

)]
p(ν−1)

n (x)

b
(ν−1)
n b

(ν−1)
n−1

−
(
x + a

(ν−1)
n−1

)
p

(ν−1)
n+1 (x)

b
(ν−1)
n b

(ν−1)
n−1

. (76b)

The second, (76b), of these two formulae is of course obtained by replacing n with n − 1 in
the first, (76a), and then by using again (76a) to eliminate p

(ν−1)
n−1 (x).
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Remark 4.1. This equation, (76b), holds for n � 2, but it does not hold for n = 1 (see (1b)
and (1c)). For this reason in our proof, see above, we had to start by assuming that (6) hold
for n = 1, and we then prove, see below, that it holds for n � 2: only using in this process
this formula, (76b), for n � 2, when it indeed holds. Note that it is the requirement that (6)
hold for n = 1 that entails hypothesis (B.1d), or equivalently (B.1f ), as a necessary condition
for the validity of proposition 2.3; while (6) holds automatically for n = 0, see (1b). This
remark is particularly relevant in view of the existence—see appendix C—of a quite general
class of coefficients a(ν)

m and b(ν)
m satisfying conditions (B.1a) and (B.1b) with (B.1c) but not

the ‘initial’ conditions (B.1d), or equivalently (B.1f )—hence failing to satisfy proposition 2.3.

Inserting these two formulae in (75) we get the formula

p
(ν)
n+1(x) = p

(ν−1)
n+1 (x) + G

(ν)
n+1p

(ν−1)
n (x) +

(
z
(ν)
n+1 + w

(ν)
n+1x

)
p

(ν−1)
n+1 (x) +

z
(ν)
n+1 − w

(ν)
n+1x

b
(ν−1)
n

xp(ν−1)
n (x)

(77a)

with

z
(ν)
n+1(x) = a(ν)

n b
(ν−1)
n−1 g(ν)

n − a
(ν−1)
n−1 b(ν)

n g
(ν)
n−1 + b

(ν−1)
n−1

(
b(ν)

n − b(ν−1)
n

)
b

(ν−1)
n−1

, (77b)

w
(ν)
n+1 = b

(ν−1)
n−1 g(ν)

n − b(ν)
n g

(ν)
n−1

b
(ν−1)
n−1

, (77c)

G
(ν)
n+1 = (

b(ν−1)
n b

(ν−1)
n−1

)−1[
b

(ν−1)
n−1

(
a(ν)

n b(ν−1)
n − a(ν−1)

n b(ν)
n

)
− a(ν−1)

n

(
a(ν)

n b
(ν−1)
n−1 g(ν)

n − a
(ν−1)
n−1 b(ν)

n g
(ν)
n−1

)
+ b(ν)

n b(ν−1)
n g

(ν)
n−1

]
. (77d)

Clearly to prove our result one must show that relations (B.1) entail that the two quantities
z
(ν)
n+1, w

(ν)
n+1 both vanish,

z
(ν)
n+1 = w

(ν)
n+1 = 0, (78)

and moreover that

G
(ν)
n+1 = g

(ν)
n+1, (79a)

since then (77) yields (6) with n replaced by n + 1.
The vanishing of z

(ν)
n+1 is immediately implied by (B.7a), and likewise the vanishing of

w
(ν)
n+1 is implied by (B.1b). There remains to prove (79a), i.e., (see (77d)) the equation

b
(ν−1)
n−1

(
a(ν)

n b(ν−1)
n − a(ν−1)

n b(ν)
n

) − a(ν−1)
n

(
a(ν)

n b
(ν−1)
n−1 g(ν)

n − a
(ν−1)
n−1 b(ν)

n g
(ν)
n−1

)
= b(ν−1)

n

(
b

(ν−1)
n−1 g

(ν)
n+1 − b(ν)

n g
(ν)
n−1

)
. (79b)

Via (B.1a) this becomes

a(ν−1)
n

[
a(ν)

n b
(ν−1)
n−1 g(ν)

n − a
(ν−1)
n−1 b(ν)

n g
(ν)
n−1 − b

(ν−1)
n−1

(
b(ν−1)

n − b(ν)
n

)] = 0, (79c)

and its validity is clear from (B.7a).
The proof of proposition 2.4 (i.e., of the factorization formula (10)) is again by induction.

Clearly (10) holds for n = 0 (hence m = 0), see (1b) and (11b). Let us now assume that it
holds up to n, and show that it then holds for n + 1. Indeed, by using it on the right-hand side
of relation (1a) with ν = m we get

p
(m)
n+1(x) = [(

x + a(m)
n

)
p̃

(−m)
n−m (x) + b(m)

n p̃
(−m)
n−1−m(x)

]
p(m)

m (x),
(80a)

m = 0, 1, . . . , n − 1,
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and clearly using the recursion relation (11a) the square bracket on the right-hand side of this
equation can be replaced by p̃

(−m)
n+1−m(x), yielding

p
(m)
n+1(x) = p̃

(−m)
n+1−m(x)p(m)

m (x), m = 0, 1, . . . , n + 1. (80b)

Note that for m = n + 1 this formula is an identity, since p̃
(−m)
0 (x) = 1, see (11b); likewise,

this formula clearly also holds for m = n, provided (8) holds, see (1a) with m = n and (11c).
But this is just the formula (10) with n replaced by n + 1.

Remark 4.2. Hypothesis (8) has been used above, in the proof of proposition 2.4, only to
prove the validity of the final formula, (80b), for m = n. Hence one might wonder whether
this hypothesis, (8), was redundant, since the validity of the final formula (80b) for m = n

seems to be implied by (80a) with (11c) and (11b), without the need to invoke (8). But in fact,
by setting m = n in the basic recurrence relation (1a) it is clear that (11c) and (11b) hold only
provided (8) also holds.

Finally, let us prove proposition 2.8, namely the validity of the factorization formula (18).
For ν = n relation (6) yields

p(n)
n (x) = p(n−1)

n (x) + g(n)
n p

(n−1)
n−1 (x), (81)

and via (9) (with n replaced by n − 1) this can be rewritten as follows:

p(n)
n (x) = (

x + a
(n−1)
n−1 + g(n)

n

)
p

(n−1)
n−1 (x), (82)

clearly entailing (together with the initial condition p
(0)
0 (x) = 1, see (1b)), the factorization

formula (18).

5. Outlook

As indicated by the Roman numeral appended to its title, the present paper is meant to be the
first of a series.

In the next paper of this series we shall focus on the connection of the approach presented
herein with results reported in our previous paper [3], and we shall report proofs of certain
findings due to Cristophe Smet reported there.

A terse indication of topics that we hope to treat in subsequent papers follows.
The examples involving ‘named’ polynomials reported in section 3 do not exhaust all

such cases encompassed by our treatment: we limited our presentation herein only to some
representative examples, to avoid overloading this paper.

The original motivation to arrive at the results reported in this paper arose in the context
of the task to prove [3] the Diophantine conjectures proffered in [1, 2] (obtained via the
research strategy tersely outlined in appendix D). The Diophantine findings entailed by the
results reported in the present paper—in both their avatars, as referring to the zeros of certain
monic polynomials belonging to orthogonal families or to the eigenvalues of certain tridiagonal
matrices—are more general than those reported in [3], and it is likely that even more general
results could be found by extending the approach employed in the present paper, see for
instance the results of appendix A or imagine variants of the second recursion relation (6).

Another point of view deserving future scrutiny is the interpretation of the nonlinear
relations (4) satisfied by the quantities A(ν)

n and α(ν) (or equivalently of relations (85)
satisfied by the coefficients a(ν)

n and b(ν)
n ) as discrete evolution equations satisfied by these

quantities—considered as dependent variables, with n and ν playing correspondingly the role
of independent variables: nonlinear evolution equations which are integrable inasmuch as they
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play the role of compatibility conditions of the linear relations (1) and (6) (interpretable in this
context as a Lax pair).

And, last but not least, the classes of (monic, orthogonal) polynomials p(ν)
n (x) identified

in this paper deserve further study—for instance to exhibit their orthogonality properties and
their relations (if any) to (possibly generalized) hypergeometric functions.

Acknowledgment
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of his paper [5].

Appendix A

In this appendix A we report the conditions on the coefficients a(ν)
n and b(ν)

n that are necessary
and sufficient to guarantee that the polynomials p(ν)

n (x) satisfy—in addition to (1)—the
following recursion relation:

p(ν)
n (x) = u(ν)

n p(ν−1)
n (x) +

(
g(ν)

n + h(ν)
n x

)
p

(ν−1)
n−1 (x), (A.1)

which is a more general version of (6) (to which it reduces for u(ν)
n = 1 and h(ν)

n = 0 ). They
read

a(ν)
n u(ν)

n − a(ν−1)
n u

(ν)
n+1 = g

(ν)
n+1 − g(ν)

n − (
a(ν)

n − a
(ν−1)
n−1

)
h(ν)

n , (A.2a)

b
(ν−1)
n−1 g(ν)

n − b(ν)
n g

(ν)
n−1 = (

a(ν)
n − a

(ν−1)
n−1

)
b

(ν−1)
n−1 h(ν)

n , (A.2b)(
a(ν)

n − a
(ν−1)
n−1

)
g(ν)

n + b(ν)
n u

(ν)
n−1 − b(ν−1)

n u(ν)
n = −a

(ν)
n−1

(
a(ν)

n h(ν)
n − a

(ν−1)
n−1 h

(ν)
n−1

)
, (A.2c)

b
(ν−1)
n−1 h(ν)

n − b(ν)
n h

(ν)
n−1 = 0, (A.2d)

u
(ν)
n+1 − u(ν)

n + b
(ν−1)
n−1 h

(ν)
n+1 = 0 (A.2e)

with the ‘initial’ conditions

g
(ν)
1 = a

(ν)
0 − u

(ν)
1 a

(ν−1)
0 , (A.2f )

u
(ν)
0 = 1, (A.2g)

h
(ν)
1 = 1 − u

(ν)
1 . (A.2h)

It is clear that these conditions reduce to (B.1) if u(ν)
n = 1 and h(ν)

n = 0; and their derivation
is sufficiently analogous to that of (B.1) (see section 4 and appendix B) that we feel justified
in leaving this task to the diligent reader.

Appendix B

In this appendix B we obtain some relations satisfied by the quantities a(ν)
n , b(ν)

n , g(ν)
n , as

entailed by relations (5) and (7) with (4). These formulae are used in section 4 to prove our
main results (see section 2). We also report some other relations that might eventually prove
useful to identify other assignments of the parameters a(ν)

n and b(ν)
n yielding via (1) novel

classes of (monic, orthogonal) polynomials p(ν)
n (x) satisfying our main results, see section 2.
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The main relations read as follows:

a(ν)
n − a(ν−1)

n = g
(ν)
n+1 − g(ν)

n , (B.1a)

b
(ν−1)
n−1 g(ν)

n − b(ν)
n g

(ν)
n−1 = 0, (B.1b)

with

g(ν)
n = −b(ν)

n − b(ν−1)
n

a
(ν)
n − a

(ν−1)
n−1

, (B.1c)

and the ‘initial’ condition

g
(ν)
1 = a

(ν)
0 − a

(ν−1)
0 (B.1d)

entailing via (B.1c) (with n = 1)

b
(ν)
1 − b

(ν−1)
1 +

(
a

(ν)
0 − a

(ν−1)
0

)(
a

(ν)
1 − a

(ν−1)
0

) = 0 (B.1e)

and via (B.1a) (with n = 0)

g
(ν)
0 = 0. (B.1f )

The fact that these relations correspond to (5) and (7) with (4) is plain: indeed (B.1)
follows immediately from (5a) and (7), while (B.1b) follows from (5b) and (7) via (4a). To
prove (B.1c) we conveniently set

b(ν)
n = β(ν)

n g(ν)
n , (B.2)

with (as implied by (5b) and (7))

β(ν)
n = A(ν)

n − A
(ν−1)
n−1 + α(ν). (B.3)

We then note that (as implied by (B.1b) and (B.2))

a(ν)
n − a

(ν−1)
n−1 = −β(ν)

n + β
(ν)
n+1, (B.4)

and this relation becomes an identity via (5a) and (B.3).
The correspondence via (7) of the initial condition (B.1f) with (4b) is as well plain.
An additional formula implied by these relations, also used in section 4, reads

a(ν)
n b

(ν−1)
n−1 g(ν)

n − a
(ν−1)
n−1 b(ν)

n g
(ν)
n−1 = b

(ν−1)
n−1

(
b(ν−1)

n − b(ν)
n

)
. (B.5a)

Indeed via (B.1) this relation can be rewritten as follows:

b
(ν−1)
n−1

[
a(ν)

n − a
(ν−1)
n−1

]
g(ν)

n = b
(ν−1)
n−1

[
b(ν−1)

n − b(ν)
n

]
, (B.5b)

and clearly this becomes an identity via (B.1c).
We moreover note (and prove at the end of this appendix B) that, if the quantities β(ν)

n

defined by (B.2) satisfy the (nonlinear) relations

β
(ν+1)
n+1 g(ν+1)

n = β(ν)
n g(ν)

n (B.6a)

with

g(ν)
n = γ (ν−1) − γ (ν−n−1) +

n∑
m=1

[
β(ν+m−n)

m − β(ν−1+m−n)
m

]
(B.6b)

where the quantities γ (ν) are a priori arbitrary (they of course may only depend on the upper
index ν), then the following assignment in terms of these quantities β(ν)

n of the coefficients
a(ν)

n :

a(ν)
n = γ (ν) + β

(ν+1)
n+1 − g

(ν+1)
n+1 , (B.6c)
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together with assignment (B.4) of the quantities b(ν)
n , satisfy all conditions (B.1) required for

the validity of the preceding proposition 2.3 (with g(ν)
n defined of course by (B.6b)). Note

that in (B.6), as well as hereafter, we adopt the standard convention according to which a sum
vanishes if its lower limit exceeds its upper limit.

Likewise, if we set (as entailed by (B.1a) with (B.1d))

g(ν)
n =

n∑
m=1

[
a

(ν)
m−1 − a

(ν−1)
m−1

]
, (B.7a)

and the coefficients a(ν)
n satisfy the (nonlinear) relation

g(ν)
n

[
η(ν) + a

(ν−1)
n−1 + g(ν)

n

] = g(ν+1)
n

[
η(ν+1) + a(ν+1)

n + g(ν+1)
n

]
, (B.7b)

with the quantities η(ν) again independent of the index n but otherwise a priori arbitrary,
then the following assignment of the coefficients b(ν)

n (together with assignment (B.9a) of
the coefficients g(ν)

n ) satisfy all conditions (B.1) required for the validity of the preceding
proposition 2.3:

b(ν)
n = g(ν)

n

[
η(ν) + a

(ν)
n−1 + g

(ν)
n−1

]
, (B.7c)

or equivalently (see (B.7b))

b(ν)
n = g(ν+1)

n

[
η(ν+1) + a(ν+1)

n + g(ν+1)
n

]
. (B.7d)

Remark B.1. As can be easily verified, the following two four-parameter assignments of the
quantities β(ν)

n satisfy the nonlinear conditions (B.6):

β(ν)
n = β00 + β10n + β01ν + β20n

2, (B.8a)

β(ν)
n = β00 + β10n + β01ν + β02ν

2, (B.8b)

with the coefficients βjk denoting arbitrary numbers. But, via (B.6) with (B.2) and (B.6c),
both these assignments yield the uninteresting result g(ν)

n = b(ν)
n = 0 and a(ν)

n = an. The
same uninteresting outcome is produced by the assignment β(ν)

n = βn, with the coefficients
βn depending arbitrarily on the index n but being independent of ν, an assignment that clearly
satisfies (B.6a) trivially. And uninteresting outcomes are obviously also produced (see (B.7c)
and (B.7d)) by any solution that equates to zero both sides of the equations (B.6a) or (B.7b).

Next we provide another expression (additional to (B.1c)) for g(ν)
n , which is clearly implied

by (B.1b) with (B.1d):

g(ν)
n = [

a
(ν)
0 − a

(ν−1)
0

] n−1∏
m=1

[
b

(ν)
m+1

b
(ν−1)
m

]
, n = 1, 2, . . . . (B.9)

Here and hereafter we adopt the standard convention according to which a product has unit
value if its lower limit exceeds its upper limit.

Note that, if (8) holds, some care must be used when employing this formula for
ν = 2, . . . , n, because one factor of the product will then take the (a priori indeterminate)
value 0/0.

Likewise solving for b(ν)
n the recursion (B.1b) by keeping fixed µ = n − ν one easily gets

b(ν)
n = b

(ν+1−n)
1

n−1∏
m=1

[
g

(m−n+ν+1)
m+1

g
(m−n+ν+1)
m

]
. (B.10)
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And in a similar vein by setting ν = µ + 	 in (B.1a) and summing over the integer index
	 we get

a(µ+m)
n = a(µ)

n +
m∑

	=1

(
g

(µ+	)

n+1 − g(µ+	)
n

)
, (B.11)

where of course m is a nonnegative integer.
One can also rewrite (B.1c) as follows,

a(ν)
n − a

(ν−1)
n−1 = −b(ν)

n − b(ν−1)
n

g
(ν)
n

, (B.12)

and by summing this expression over n with n − ν = µ kept fixed one obtains the additional
relation

a(ν)
n = a

(ν−n)
0 +

n∑
m=1

[
b(ν−1+m−n)

m − b(ν+m−n)
m

g
(ν+m−n)
m

]
. (B.13)

Finally, let us obtain relations (B.6a). Subtracting (B.1a) from (B.4) we get the relation

a(ν−1)
n − β

(ν)
n+1 + g

(ν)
n+1 = a

(ν−1)
n−1 − β(ν)

n + g(ν)
n , (B.14)

clearly entailing (B.6c), that is thereby proven. Then the insertion of this expression, (B.6c),
of a(ν)

n in (B.1a) yields

g
(ν+1)
n+1 − g(ν)

n = γ (ν) − γ (ν−1) + β
(ν+1)
n+1 − β

(ν)
n+1, (B.15a)

and by summing this equation over n with n − ν = µ kept fixed we obtain the formula

g(ν)
n = g

(ν−n)
0 + γ (ν−1) − γ (ν−n−1) +

n∑
m=1

[
β(ν+m−n)

m − β(ν−1+m−n)
m

]
, (B.15b)

which, via (B.1f ), yields (B.6b).

Appendix C

In this appendix C we report a solution, involving an arbitrary function, of conditions (B.1a)
and (B.1b) with (B.1c), which also satisfies the symmetry property (13):

a(ν)
n = f (2n − ν) + f (2n − ν + 1), (C.1a)

b(ν)
n = −f (2n − ν)f (2n − ν − 1), (C.2b)

g(ν)
n = −f (2n − ν), (C.3c)

with f (z) an arbitrary function. But it is plain that this solution disappears altogether
(f (z) = 0) if one requires it to satisfy either the additional ‘initial’ condition (B.1d) (or
equivalently (B.1f)) also required for the validity of proposition 2.3 or the hypothesis (8)
required for the validity of proposition 2.6.

Appendix D

The original strategy—as fully described for instance in [4]—to arrive at the Diophantine
findings that provided the motivation for the developments reported in this paper can be
outlined as follows. (i) Identify an integrable dynamical system. (ii) Modify it so that it
becomes isochronous. (iii) Identify an equilibrium configuration of the isochronous system.
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(iv) Investigate, via the standard linearization technique (the theory of small oscillations
around equilibria) the behaviour of the isochronous system near its equilibrium configuration,
which is then characterized by a set of basic oscillation frequencies whose values are provided
by the eigenvalues of a matrix obtained from the equations of motion and evaluated at the
equilibrium values of the dependent variables. (v) Observe that—because the isochronous
nature of the dynamical system under consideration must also characterize its behaviour around
equilibrium—all these basic frequencies of oscillation must be integer multiples of a basic
frequency. (vi) Infer that all the eigenvalues of the matrix characterizing the behaviour around
equilibrium must be integers (up to a common rescaling). This fact—that all the eigenvalues
of a matrix, of arbitrary order and of reasonably neat appearance, are integers—constitute the
Diophantine finding (which is nontrivial provided the similarity transformation diagonalizing
the matrix in question is not obvious).

In this appendix D we provide—quite tersely—two (new) examples of this procedure.

D.1. First example: Toda many-body model

An integrable dynamical system:

η′
n = ξn − ξn−1, ξ ′

n = ξn(ηn+1 − ηn). (D.1)

These are the equations of motion (in the version more convenient for our purposes) of the
classical Toda model [14, 15], whose integrability was noted by Henon [16] and demonstrated
by Flaschka [17, 18] and Manakov [19].

Free-end boundary conditions:

ξ0 = ηN+1 = 0. (D.2)

The trick:

yn(t) = exp(it)ηn(τ ), xn(t) = exp(2it)ξn(τ ), τ = i[1 − exp(it)]. (D.3)

The isochronous version:

ẏn − iωẏn = xn − xn−1, ẋn − 2iωxn = xn(yn+1 − yn), x0 = yN+1 = 0. (D.4)

Equilibrium configuration (satisfying the free-end boundary conditions):

xn(t) = x̄n = n(2N + 1 − n), yn(t) = ȳn = 2i(N + 1 − n). (D.5)

Small oscillations around equilibrium:

xn(t) = x̄n + εun(t), yn(t) = ȳn + εwn(t), ε ≈ 0. (D.6)

The linearized equations of motion:

ẇn − iwn = un − un−1, u0 = 0, (D.7a)

u̇n = n(2N + 1 − n)(wn+1 − wn), wN+1 = 0, (D.7b)

ẅn − iẇn − n(2N + 1 − n)wn+1 + 2[N(2n − 1) − n + 1)]wn

− (n − 1)(2N − n + 2)wn−1 = 0, wN+1 = 0. (D.7c)

The basic oscillations:

wn(t) = w̃n exp(iλt). (D.8)

The eigenvalue problem determining the eigenfrequencies λ:

λ(λ − 1)ξ̃n + n(2N + 1 − n)w̃n+1 − 2[N(2n − 1) − n + 1)]w̃n

+ (n − 1)(2N − n + 2)w̃n−1 = 0, w̃N+1 = 0. (D.9)
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Diophantine finding: setting N = µ, defining the n × n matrix L(µ) as follows,

L(µ)
m,m = m(2µ − m + 1) + (m − 1)(2µ − m + 2)], (D.10a)

L
(µ)

m,m−1 = −(m − 1)(2µ − m + 2), (D.10b)

L
(µ)

m,m+1 = −n(2µ − m + 1), (D.10c)

one concludes that the solution of the following polynomial equation of degree 2n in λ must
have rational solutions,

det[λ(λ − 1) − L(n)] = 0. (D.11)

Hence, setting z = λ(λ − 1) so that λ = (1 ± √
1 + 4z)/2, one infers that 1 + 4z must be the

square of a rational number, say 1 + 4z = (4m − 1)2 hence z = 2m(2m − 1) with m rational.
Indeed one finds by direct calculation∣∣∣∣z − 4 4

4 q − 10

∣∣∣∣ = (z − 2)(z − 12), (D.12a)

∣∣∣∣∣∣
z − 6 6 0

6 z − 16 10
0 10 z − 22

∣∣∣∣∣∣ = (z − 2)(z − 12)(z − 30), (D.12b)

∣∣∣∣∣∣∣∣
z − 8 8 0 0

8 z − 22 14 0
0 14 z − 32 18
0 0 18 z − 38

∣∣∣∣∣∣∣∣
= (z − 2)(z − 12)(z − 30)(z − 56), (D.12c)

∣∣∣∣∣∣∣∣∣∣

z − 10 10 0 0 0
10 z − 28 18 0 0
0 18 z − 42 24 0
0 0 24 z − 52 28
0 0 0 28 z − 58

∣∣∣∣∣∣∣∣∣∣
= (z − 2)(z − 12)(z − 30)(z − 56)(z − 90).

(D.12d)

One therefore sees that the numbers m are in fact integers, and infers that, if one defines the
family of polynomials P

(µ)
n (z), of degree n, via the formula

det[z − L(µ)] = P (µ)
n (z), (D.13)

there holds the Diophantine property

P (n)
n (z) =

n∏
m=1

[z − 2m(2m − 1)]. (D.14)

Indeed the tridiagonal character of the n × n matrix L(µ), see (D.10), entails that the family
of (monic, orthogonal) polynomials (D.13) is characterized by the recursion relation

P
(µ)

n+1(x) = (x − 2n2 + 4nµ + 2µ)P (µ)
n (x) − n2(2µ − n + 1)2P

(µ)

n−1(z), (D.15a)

P
(ν)
−1 (x) = 0, P

(ν)
0 (x) = 1, (D.15b)
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and it is therefore immediately seen that they coincide with the polynomials p(ν)
n (x) of our

previous paper [3] up to the identification ν = 2µ + 1, so that the Diophantine factorization
(D.14) coincides with the Smet formula (see equation (59) of our previous paper [3])

p(2n+1)
n (x) =

n∏
m=1

[x − 2m(2m − 1)]. (D.16)

A proof of this formula is actually provided in the following paper of this series [21].

D.2. Second example: Bruschi–Ragnisco–Levi many-body model

An integrable dynamical system:

ζ ′
m = ζm(ζm−1 − ζm+1), m = 1, . . . , M, ζm ≡ ζm(τ). (D.17)

This is the scalar version of equation (5.4.3–13a) of [13] (it will eventually be worthwhile to
consider other equations of this hierarchy [20]).

Free-end boundary conditions:

ζ0 = ζM+1 = 0. (D.18)

The trick:

zm(t) = exp(it)ζm(τ ), τ = i[1 − exp(it)]. (D.19)

The isochronous version:

żm − izm = zm(zm−1 − zm+1), m = 1, . . . ,M, (D.20a)
z0 = zM+1 = 0. (D.20b)

A convenient ansatz:

M = 2N − 1, z2n−1 = xn, z2n = yn, n = 0, 1, . . . , N,N + 1; (D.21a)

m = 2n − 1 : ẋn − ixn = xn(yn−1 − yn), n = 1, . . . , N, y0 = 0, (D.21b)

m = 2n : ẏn − iyn = yn(xn − xn+1), n = 1, . . . , N, xN+1 = 0. (D.21c)

Equilibrium configuration (satisfying the free-end boundary conditions):

xn(t) = x̄n = i(n − N − 1), yn(t) = ȳn = in. (D.22)

Small oscillations around equilibrium:

xn(t) = x̄n + εξn(t), yn(t) = ȳn + εηn(t), ε ≈ 0. (D.23)

The linearized equations of motion:

ξ̇n = i(n − N − 1)(ηn−1 − ηn), ξN+1 = 0, (D.24a)

η̇n = in(ξn − ξn+1), η0 = 0; (D.24b)

ξ̈n = (N + 1 − n)[(n − 1)ξn−1 − (2n − 1)ξn + nξn+1], ξ0 = ξN+1 = 0. (D.24c)

The basic oscillations:

ξn(t) = ξ̃n exp(iλt). (D.25)

The eigenvalue problem determining the eigenfrequencies λ:

λ2ξ̃n + (N + 1 − n)[(n − 1)ξ̃n−1 − (2n − 1)ξ̃n + nξ̃n+1] = 0, ξ̃0 = ξ̃N+1 = 0. (D.26)
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Diophantine finding: setting N = ν, defining now the n × n matrix M(ν) as follows,

M
(ν)
m,m+1 = −m(ν + 1 − m), m = 1, . . . , n − 1, (D.27a)

M(ν)
m,m = (2m − 1)(ν + 1 − m), m = 1, . . . , n, (D.27b)

M
(ν)
m,m−1 = −(m − 1)(ν + 1 − m), m = 2, . . . , n, (D.27c)

one finds

det[x − M(n)] =
n∏

m=1

(x − m2). (D.28)

Examples:∣∣∣∣x − 2 2
1 x − 3

∣∣∣∣ = (x − 1)(x − 4), (D.29a)∣∣∣∣∣∣
x − 3 3 0

2 x − 6 4
0 2 x − 5

∣∣∣∣∣∣ = (x − 1)(x − 4)(x − 9), (D.29b)

∣∣∣∣∣∣∣∣
x − 4 4 0 0

3 x − 9 6 0
0 4 x − 10 6
0 0 3 x − 7

∣∣∣∣∣∣∣∣
= (x − 1)(x − 4)(x − 9)(x − 16), (D.29c)

∣∣∣∣∣∣∣∣∣∣

x − 5 5 0 0 0
4 x − 12 8 0 0
0 6 x − 15 3 0
0 0 6 x − 14 8
0 0 0 4 x − 9

∣∣∣∣∣∣∣∣∣∣
= (x − 1)(x − 4)(x − 9)(x − 16)(x − 25),

(D.29d)

∣∣∣∣∣∣∣∣∣∣∣∣

x − 6 6 0 0 0 0
5 x − 15 10 0 0 0
0 8 x − 20 12 0 0
0 0 9 x − 21 12 0
0 0 0 8 x − 18 10
0 0 0 0 5 x − 11

∣∣∣∣∣∣∣∣∣∣∣∣
= (x − 1)(x − 4)(x − 9)(x − 16)(x − 25)(x − 36), (D.29e)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x − 7 7 0 0 0 0 0
6 x − 18 12 0 0 0 0
0 10 x − 25 15 0 0 0
0 0 12 x − 28 16 0 0
0 0 0 12 x − 27 15 0
0 0 0 0 10 x − 22 12
0 0 0 0 0 6 x − 13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (x − 1)(x − 4)(x − 9)(x − 16)(x − 25)(x − 36)(x − 49). (D.29f )

The corresponding orthogonal polynomials:

p̌(ν)
n (x) = det[x − M(ν)], (D.30)
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p̌
(ν)
n+1(x) = (

x + a(ν)
n

)
p̌(ν)

n (x) + b(ν)
n p̌

(ν)
n−1(x), (D.31a)

p̌
(ν)
−1(x) = 0, p̌

(ν)
0 (x) = 1, (D.31b)

a(ν)
n = −(2n + 1)(ν − n), (D.31c)

b(ν)
n = n2(ν − n)(ν + 1 − n). (D.31d)

Identification with the results of sections 2 and 3 (see in particular section 3.1):

p̌(ν)
n (x) = p(ν)

n (x; k1, k2, k3, k4, k5), (D.32a)

k1 = − 1
6 , k2 = − 1

2 , k3 = 2
3 , k4 = k5 = 0. (D.32b)

Then the remark 3.2 demonstrates the validity of the Diophantine finding (D.28).
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